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Abstract. We define then-lift of a one-dimensional system;.1 = f(x;). The n-lift can

be thought of as a perturbation of the one-dimensional system depending on the state of the
systemn — 1 time-steps back. We prove that certgfrinvariant Cantor sets give invariant
Cantor sets in the lifted system. We prove thaf ihas an invariant hyperbolic Cantor set then

the lifted system has an invariant hyperbolic Cantor set provided the derivativEésobky a

simple condition. We also prove that hyperbolicity is preserved if the same conditions on the
derivatives of f hold.

1. Introduction

This paper is the first of a three-part work on perturbations of one-dimensional discrete
dynamical systems where the perturbation depends on several time-steps back. The first
part is concerned with hyperbolic behaviour.

In this paper we will introduce the-lift of a one-dimensional discrete dynamical system.
In [J] we defined the lift ofk-dimensional dynamical systems agparameter families of
systems defined on a phase space of double dimension.n-Tifteof a one-dimensional
system will turn out to be a family of systems parameterized by two real parameters and
is dependent on a bounded magp The n-lift of a one-dimensional system is defined on
a phase space of dimensian The use of the namift should not be confused with the
lift of a map to the covering space of its target space. Below we will give a short physical
motivation for studying perturbations of this kind.

Consider the one-dimensional system

Xit1 = f(x)
and a perturbation of this system by

Xiyr = f) +ag(xi, Xi—1, Xi—2, ..., Xi—pg2) + €Xipq1
wherea ande are small real parameters, and

g R SR
is a smooth function. We assume that the functiohas smallC*-size on bounded sets.
Clearly this system is invertible ¥ # 0, and the smoothness properties depend only on
the smoothness properties ifandg. The main purpose of this paper is to show that the
dynamics of the one-dimensional systam; = f(x;) and the dynamics of the perturbed

systemx; 1 = f(x;) + ag(x;, Xi—1, Xi—2, ..., Xi_n12) + €x;_,41 are closely related with
respect to some properties,gfhas smallC!-size andx ande are small.

1 E-mail: torejoiu.hioslo.no, ToreMoller.Jonasseniu.hioslo.no
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Dynamical systems of the type
Xivr = f () +ag(xi, Xi—1, Xi—2, ... s Xi—ny2) + €Xiny1

arise in many applications, in models in population dynamics, as models for Roimegas
for attractors in forced oscillators and in data encoding in signal processing. However, most
authors use well known maps such as the logistic map and &midmap in examples.
Here we will outline a possible application for the systems studied in this paper.

Let {s;} be a sequence of signals. A sender wants to transmit coded signals to a receiver.
This can be done by coding the signals through a chaotic attractor as

Xip1 = f(x;) +oag(xi, Xi—1, Xi—2, ..., Xi—py2) + €(Si—pp1)Ximnt1-

The receiver can decode the received signal by applying the inverse map. Examples of this
technique can be found in [E] where the logistic map and teedd map is used. During
transmission the coded signals are subject to noise. Numerical experiments done by the
author indicate that the terg(x;, x;_1, x;_2, ..., X;_,1+2) May acts as a filter and reduce the
error in the decoded signal.

Another important application of the systems studied in this paper is in reconstruction
of attractors for systems where the nonlinearity is essentially one-dimensional. Hence it is
of interest to study the mathematical properties of such systems.

Both applications will be discussed in a forthcoming paper.

Let us now introduce the variableé’) = Xi_j41. Hencezl-(f1 = X;_j4+2, SO the system

Xip1 = f(x;) +oag(xi, Xi—1, Xi—2, ..., Xi—p42) + €Xi_py1
takes the form
(1 @ @ 2 -1 (
= @) +agcP 2?2 ) e
@ _ O
Zir1 =%
3 _ @
Ziv1 =%
n) _ _(m=1
Ziv1 =% .

We write this system as a mappif®f — R”, and hence it takes the form
(X1, X2, X3, ..., Xp) > (f(x1) + og(x1, X2, ..., Xp_1) + €Xy, X1, X2, ooy Xp1).
We will denote this map by

Fy. R" — R"

or simply F. As remarked abovef is a diffeomorphism iff andg areC*-maps and # 0.

The main result in this paper is to show a relationship between ceftaivariant sets on

the real line, and certaifr-invariant sets inR". We will show that if C is an f-invariant

Cantor set on the line such thgt. is topologically equivalent to a forward shift an

symbols, then, under suitable conditioAshas anF-invariant Cantor seD such that the

restriction F|p is topologically equivalent to a full shift on symbols. We will also give a

simple condition to ensure a hyperbolic structure on the tangent bundle over these sets.
The functiong is used to allow a certain freedom in the perturbation, and the restriction

in the form of the perturbation depending spis used to have a contraction fersmall,

and to obtain a nice formula for the inverse map.
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2. The n-lift, the simple n-lift and the zero n-lift

We will now define some maps which are useful when studying perturbations of the system
f : R — R where the perturbation depends on several earlier states.

Definition. Let f € C"(R,R) andg € C"(R*"%, R) wherer > 1.
The zeron-lift of f is the map

(X1, .., x) > (f(x1), X1, ..., Xp—1)-

The simplen-lift of f is the one-parameter family of maps given by

(X1, ..., X)) > (f(x1) + €xp, X1, .00, Xp—1).

Any two-parameter family of maps of the form

(-xla AR ] xl‘l) = (f(xl) + ag(-xlv AL ] xn—l) + e-xna xls MR ] xn—l)
is called an-lift of f.

Remark. We note that the simple-lift family contains the zero:-lift with ¢ = 0, and

that anyn-lift family contains the simple:-lift family with « = 0. The zeron-lift of f

has the same dynamical propertiesfasThe simple form of the simple-lift allows us to

relate some of the dynamics of the zerdift to the dynamics of the simple-lift (mostly by
geometrical techniques). Once this is established we can use standard perturbation theorems
for diffeomorphisms to establish the relation to a generhft of f.

3. Simple properties

We will now give some basic properties of thdifts of f. They are all easily proved by
direct computation or by elementary theorems from calculus, so we omit the proofs here.

Proposition 1. Let ¢ € CY(R"1 R) be fixed. Then-lift of f, denoted byF, has the
following properties:

D If feC'(R,R), geC'(R"LR) ande # 0 thenF e Diff "(R").
(2) The inverse ofF, (¢ # 0), is given by

-1
(X1, X2, oo, X1, Xp) > (X2, X3, ..., Xy, € (X1 — f(x2) —ag(xa, ..., X,))).

(3) F has a constant Jacobi determinant given byligt= (—1)"*¢.
(4) The characteristic polynomial of thith iterate of the zero:-lift of f at a point
p = (x1,...,x,) IS given by

k < afk > n—1
detal — DF*(p)) = (2 — 2 (p) |\ L.
8x1

(5) Assumef has a primitivep-periodic hyperbolic orbi{x, ..., x,} and that theC*-size
of g is small. Then there exist numbe¥s> 0 ands, > 0 such thatF has ap-periodic
hyperbolic orbit for allle| < 81, |¢| < 8». Furthermore if{x, ..., x,} is stable then
the corresponding lifted orbit is stable, and{if, ..., x,} is unstable, and # 0 then
the corresponding lifted orbit is a hyperbolic saddle with a one-dimensional unstable
manifold and a(n — 1)-dimensional stable manifold.



940 T M Jonassen
The zero-lift is given by the formula

(X1, . oos X)) = (f(x2), X1, 000y X))

Hence this map eventually forgets its past. We are concerned abpetiodic orbits. We
have the following formulae for the-power of the zero lift.
If p<n

(xls cees .Xn) = (fp(xl)s fp_l(xl)v s f(xl)v X1y ooy xnfp)

while if p > n

(xls cee .Xn) = (fp(xl)s fp_l(xl)v LR fp_n+l(-xl))~

Let r be ap-periodic point for f and letg be a corresponding-periodic point forFj.
Letk, , be the unique integer such th@i, , — Dp <n <k, ,p. If r is a p-periodic point
for f then it is clearlyk, , p-periodic so we may replace by k, , p (and still denote this
integer byp), and assume that the-power of the zero-lift has the form

(X1, s X)) > (FP (), fP7H ), ey fP ().
The pointg € R” is then given by
g =(r, fP7Xr), P20, .o, fPT)

where we use the convention of choosings the first coordinate ig. We see that any
point in the affine-linear subspace of dimensior 1, given byx; = r is mapped tq; by
F3. Hence it acts as a (degenerate) stable manifold; for

Assume that|Df”(r)] > 1 and letU, c R be a neighbourhood of such that
|IDfP(x)|] > 1 for all x € U,. ThenU, is a local unstable manifold for. Consider
the mapy : R — R” defined by

Y(x) = (fPx), P, P ).

We claim thaty/(U,) is a local unstable manifold fog. To see this we first note that
¥ (r) = q, secondly thatF}' (v (U,)) D ¥ (U,). The last statement is easily seen from the
fact that image ofR” by FJ is contained in a one-dimensional s¢t,(r) = r and f7 is
expandingU,. Let F} denote the restriction aff to y(U,). Itis clear thatF, "’ (s) —> ¢
asn — oo for all s € ¥ (U,) since f " (x) — r asn — oo for all x € U,.

4. Homoclinic orbits

We now turn our attention to non-degeneracy homoclinic orbits associated with a hyperbolic
periodic point of f. Let r be an unstablg-periodic orbit of f, and letU,, ¥ andg be
as above. Recall that a homoclinic orbit is defined as an orbit startifg imtting » after
a finite number of iterates. The orbit is called non-degenerate if the derivative along this
orbit is non-zero. We will show that non-degenerate homoclinic orbitg igive rise to
transverse homoclinic points in the lift.

Let r, € U, and let{r,, f(ry), ..., f*(r;) = r} be a non-degenerate homoclinic orbit
for f associated with the periodic poipt i.e.

h
[[orcfien #o0.
i=0
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Consider an open neighbourhoét, C U, of r,. Then by the non-degeneracy condition
above, we have” (U,,) D W,, whereW, C U, is some local unstable manifold of Now
let

gn = (rns f77H ) SR ).
Theng, € ¥ (U,), and Fé’(qh) = ¢q. To see this we simply note that

Fgn) = ("GP, 1), - 1P )
= (fP" )y FPHS ) o PN )))

=(r, fP7Xr), fP20), o, PN = ¢,

Now ¢, € ¥ (U,) C ¥ (U, and F(’;(l/f(U,h) O Y¥(W,). Let W,;C(Fé", g) denote the
(degenerate) local stable manifold @t This is a(n — 1)-dimensional disc with centre
in ¢ and the first coordinate equal to Since|Df?(r)| # 0, the tangent space @f(W,)
has a non-zero first coordinate, and hence we have a transverse intersedtiaw ot,, ))
and Wi (FY ., q) atgq.

Let g € CY(R"1, R) be fixed. Irwin’s proof [PM] of the local stable manifold theorem
produces a local stable manifold at a periodic point and depends only on forward iterates of
the map. Hence it applies in the non-invertible case to produce a local stable manifold. The
proof of the (un)stable manifold theorem using the nonlinear graph transform [Sh] produces
a local unstable manifold at a periodic point, and depends only on forward iterates of the
map. Hence it applies to the non-invertible case also. The mig@d F, . are close in
the C*-topology on any compact set for agywith small C*-size if the real numbers and
€ are close to zero. By invariant manifold theory [PM] we know thabiis an embedded
disc in the unstable manifold and this disc contains the periodic point, then we may perturb
the system such that the corresponding invariant manifold of the perturbed system contains
a disc D that isC1-close toD. The zero-lift has a transverse intersectiony aand hence
a small perturbation of the zero-lift has a transverse intersection clage to

We have now proved the first part of the following theorem.

Theorem 1. Assume thatf : R — R has a non-degenerate homoclinic orbit associated
with an unstablep-periodic orbit, and letg € C1(R""1, R) be fixed. Assume that the
Cl-size of g is small. Then there exist numbefs > 0 ands, > 0 such that the:-lift of

f has a transverse homoclinic point for @l < 8; and O< |e¢| < §2. In particular, a non-
degenerate homoclinic orbit fgf implies that the:-lift of f has an invariant hyperbolic set

A containing the periodic orbit and the transverse homoclinic point such that the restriction
of the lift to A is topologically equivalent to a sub-shift on finitely many symbols.

Proof. The first part is already proven. The second part can be proved simply by applying
the Smale—Birkhoff theorem to our situation [GMN]. (]

5. Invariant Cantor sets

We will now assume thay : I — I has an invariant Cantor sét, such that the action
of f on C is chaotic (in the sense described below), and such@hadimits a construction
of the following type.

Let Cp = [¢o, &) be the minimal closed interval containing (here minimal is with
respect to inclusion), where we assurfidas the following properties.

We assumef hasc — 1, (c > 2), critical points, denoted bg, .. ., ¢._1, in the interior,
ordered by index, such that < ¢;.1. Furthermore we assume th#tis monotone on
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each lapL; = [¢i-1,¢], i =1, ..., ¢, and that the critical values do not belongdsg, i.e.
f@E)gcCofori=1,...,c—1,s0f(L;) D Co.
We assume that the Cantor getis the intersection over all its generations, denoted by

Cy:
c=(\C

n=0

where
Co = f(C) N f~" P (Co)N---N fH(Co) N Co
where eaclC, is a disjoint union ofc” closed intervald;

Co =J L),

where ji € {1,...,c}, and where the indices are chosen such that I;,..; implies
fx) € I,..;,. Furthermore, we assume that the Lebesgue measie®, of C is zero

nILmoo M(Cn) - nILmoo ® (U Ij1~~~j,,) - nleoo Z M(Ijlmj") =0

In particular each nested sequence of closed intervals converges to a unique @aint in

1

Ly D 0jyjp O+ D ljyjy O+ D {5}

wherej = jijoja--- jn - - - iS the unique address ag eC.

Leth: C — X} denote the address homeomorphism— j, whereX} is the space
of all sequences on symbols equipped with the metric

T 008-n’ .n
d(i,j)zz @ ]).

211
n=1
Hence our assumptions imply thAt: C — C is chaotic in the sense of being topologically
conjugate to a forward shift on symbols:

C—f>C

1 J»

S — xF
[ea

whereo is the shift map orz .

We remark that we do not assume thfacts hyperbolically orC, i.e. |Df (x)| > 1 for
all x € C. However, we assume thabf(¢;)| > 1 fori = 0, ¢, to avoid the problem of
one-sided stability of fixed points or period-two points{&, ¢.}.

Let us now turn to the construction of an invariant set for the simplié assuming
that f has an invariant set as described above. We will need some simple consequences of
our assumptions. All of them can be trivially proved, so we omit the proofs, and collect
the properties in a lemma.

Lemma 1. Assume thatf, C and Cq are as described in the text above.
(1) There exists a numbgp > 0 such that
min 1d(f(§i)7 Co) = do.

1<i<ce—

Hered denote the usual distance
(2) The boundary of’y is invariant, f ({¢o, ¢.}) C {Zo, &c}-
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(3) There exist a positive numbég > 0 such that one of the following is true for all
0 < 8 < 8; (case (i) and (ii) can occur only i — 1 is odd, and case (iii) and (iv) can
occur only ifc — 1 is even):

(i) f() = f(&) = with f(¢o—8) <o—3and f(¢ +8) < o—38.

(i) f(Zo) = ¢o and f(5.) = ¢ with f(fo—8) < fo—d and f (¢ +68) > & + 6.

(iv) f (o) = & and f (&) = go with f(§o —8) > ¢+ 6 and f (¢ +8) < o — 4.

Chooses > 0 such that < min{8y, 81}, wheredy ands; are given in lemma 1. This
will be kept fixed.

Let C(8) = [¢o — 8,¢ + 8]. Assume, for simplicity, thatf has a single critical
point z; and that case (3) (i) in lemma 1 holds. Then there exists & 0 such that
flo—8)+et <lo—38, f(&r)+et>¢+8and f(¢. +8)+et <o— 8 forallz e C(S)
and alle such thatle| < ¢;. Clearly similar statements hold for the other cases in (3) in
lemma 1 with any finite number of -critical points. We will assume & |¢| < €5 in what
follows.

Let

n times
Mp(8) =C(@6) x---xC(6) .

The setMy(8) is then-dimensional analogue @ (§) and will contain theF,-invariant set.
The boundary ofMy(8) consists of the faces affo(8), denoted byk/(8), i = 1,...,n,
j =0,1. Hence we write

IMo(8) = U K/ (5)

1<i<n
j=0,1

wherex; = ¢o—8 in K%(8) andx; = £.+38 in K}(5). ClearlyK/ () is a(n —1)-dimensional
cube. In what follows we will omit the explicit reference ddn objects depending of.

Claim 1. F.(K{) N Mo = 2.
Claim 2. F.(Mo) N K{ = L{U---U L whereL] N L] = @ if k # j. The dimension of
Ljisn—1.
Claim 3.
F-Mo)NMo= | N

1<ip<c

whereN; N N; = @ if i # j. The dimension ofV; is n, and the setsL{ are parts of their
boundaries.

Proof of claim 1. The numberes is chosen such that the first componenthtK{) does
not intersectC(§). Hence the claim follows. O

Proof of claims 2 and 3. The intersections of the image af, by K] are determined
by the equationsf(x1) + ex, = ¢ — 8 and f(x1) + €x, = ¢ + 8. There exist 2
intervals Q1, Qo, ..., Qs C C(8) such that ifx; € Q; then we can find a, € C(§)
such that one of the above equations holds. Furthermore, by our choicevefsee that
o—8,81,...,¢+8¢ Q; fori =1,...,2c. Hence claim 2 is proved. Let C C(J),
j=1,...,c+ 1 denote the intervals such thatif € J; then f(x1) + €x, & C(§) for any
x, € C(8),and letP; c C(8),i =1,...,c, denote the remaining parts 6f3), i.e.

Plu---UPC:C((S)\((UQ,-)U(UJk».
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Clearly the setsP; corresponds to certain inner points K(Mp) N My, and Q; to cubes
intersecting the boundary . O

Theorem 2. Assumef : R — R has an invariant Cantor set, as described in the text
above, on whichf is conjugate to a forward shift osnsymbols. Then the simple-lift of

f has an invariant set such that is conjugate to a full shift o symbols provided is
small enough and different from zero.

Proof. We define setd/; and M_; inductively by

My =F.(M,_1)N My and M_; = F,X(M_4,1) N Mo for k> 1.
SinceF. is a diffeomorphism we see that

My = FX(Mo) N FE"Y(Mo) N ... N F.(Mo) N My

M_ = F-X(Mo) N E* Y (Mo) N ... 0 F-1(Mo) N Mg

for k > 1. HenceM, c My_;andM_;, C M_;,,.
Let 1< <k. Then

FI(M_;) = F. (F-*(Mo) N F.*™(Mo) N ... N F1(Mo) N M)
=F " (M) n...n F7Y(Mo) N Mo N F.(Mg) N ... N F! (M)

=M;_ N M.

Similarly, F_I(Mk) =M NM_.

Let #M denote the number of connected components of alset R". Note that if
M, # @ with #M, = c* then M;_, N M_; # @ with #(M_; N M_;) = ¥, and similar
if M_;, # @ with #M_, = ¢ then M;_, N M; # @ with #(M;_, N M;) = ¢*, where the
number of components is independent athen 1< [ < k. In particular, if M; # @ with
#M, = ¢ for all | € Z, thenM, N M_; # @ with #(M, N M_;) = ¢% for all k > 0.

Since F, is a diffeomorphism then by constructidd, is closed for alll € Z. Assume
in what follows thatM,; # @ for all [ € Z. Let A, = M; N M_; and let

A= ﬁ Ay.
k=0

We see that

ANe=MNM_; CM_1NM_jy1 =271

SO A is a nested intersection of closed decreasing non-empty sets, andténen-empty
and closed. Clearlw is F.-invariant.
Let p = (x1,x2,...,x,), and letA;,i = 1,2, ..., ¢, be the sets

Ai={peMy:1<x1 <} wherei =12, ...,c.

We note thatM; = F.(My) N Mg C UA;. Theaddressof a pointx € M, is the sequence
jojijz2- -+ ji—1 Of lengthk where j; =1 if F/(x) € L,;. The address is well defined since
Fi(x) e My fori =0,1,...,k—1.

Now F/(M_;) = M;_; N M; C My if 1 <1 < k. Theaddressof a pointx € M, is the
SequUencg_xj_ii1--- j—1 wherej_; =i if Fl(x) € A;.

The addressof x € M_, N M, is given by the sequence

JokJ—k+1° " J-1jojij2 -+ Jk-1.
The addresses of two distinct pointsy belonging to the same connected component in
M_, N M, are clearly equal; however, if, y belongs to different components they have
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different addresses. Hence each connected componewt ph M, is uniquely coded by
a sequence of lengthk2f ¢ different symbols.

If every connected component &f_; N M, converges to a point @ — oo, then we
have the commutative diagram

A — s A

] L
o
X, — X,

where X, denotes the space of bi-infinite sequences aymbols equipped with its usual
metric, o is the shift-map and is a homeomorphism.

We note that ifM; # @ with #M, = c* for k > 1 thenM_; # @ with #M_;, = ¢*
since F%(My) = M_,. We claim thatM, # @ with #M, = c* for all k > 0, and will
prove this by induction.

AssumeM;_; is a disjoint union ofc*~ n-dimensional cubes such that each cube in
this union intersectk;, j = 0,1 in (n — 1)-dimensional cubes. Le¥ denote one cube
in this union. By the same argument as in the proofs of claims 1-3 above we see that
F.(M) N My is a disjoint union ofc n-dimensional cubes such that each cube intersects
K{, j =0,1, in (n — 1)-dimensional cubes. Hendd; = F.(M;_1) N My has the desired
properties, and sinc#fy has these properties the claim follows by induction.

It remains to prove that every connected componerim M_, converges to a point
ask — oo.

We claim that each connected componentMf converges to a curve with endpoints
in K9 and K} ask — oo. Let K; denote the(n — 1)-dimensional cube iV, defined
by a constant first component; = x*, wherefo — 8§ < x* < ¢ + 8, and letM denote a
connected component ii;. We will prove thatM N K; converges to a point ds— oo.

This will indeed prove the claim.

Consider first a component iif; and its intersection with théx,, x3)-plane in the cube
K defined above. The indices refer to the coordinaté®’inThe intersection is determined
by the equationc* = f(x1) + €x,, and there is a unique interv@l* of x;-values such that
there is ax, € C(8) for which this equation holds. Let denote the length of*, and lets
denote the length of (§). By using the mean value of the derivative pfover the interval
I; in the one-dimensional system, whéeyas the interval corresponding t* we find that
q; ~ eu(l;). HenceM N K7 is approximately an — 1)-dimensional cube with the length
of one side equal tex.(Z;) and the length of the other sides equaktdrhe total volume is
therefor approximately;c"~2. On the next iterate the side of lengthis mapped torz and
hence the second generation components are approximately cubes with two sides equal to
g1 andn — 3 sides equal te. After n — 1 iterations ther — 1)th generation of components
are approximately cubes with all sides equalgio On then-iterate we must modify the
interval Q% to Qf.,, because the intersection equation is now givencby= f(x1) + €x,
wherex, € Qf4, and not inC(8) as on earlier iterates, and we find that the length of

ew IS approximatelyg; = eu(l;,;,) wherel; ;, is the corresponding component of the
one-dimensional Cantor set. By continuing this process we clearly obtain cubes converging
to a point sinceu(lj, j,..;,) — 0 asl — oo by assumption. This proves the claim.

We will also need to control the size of the connected componenig, inWe claim
that the connected componentsMf ; converge to cubes of dimensian- 1 transverse to
the Cantor set of curves inM,. From the formula for the inverse map

(xla X2y eny xl’l) g (-xza X3y oo ey Xy 6_1(x1 - f(xz)))
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we see that the intersection equation can now be written*as e 1(x; — f(x2)), i.e.

x1 = f(x2) +€x;. The set of usefuk,-values at a connected componentin, then has,
clearly, length close te(1;, . ;,), wherel;, ;, is the interval corresponding to the component

in question. Ask — oo the set of usefuk,-values converges to a Cantor set, and since
these points are copied into the first component of the image, and all other components

ranges all ovelC(§) we have proved the claim. O

Corollary 1. Assumef : R — R has an invariant Cantor set, as described in the text
above, on whichf is conjugate to a forward shift ansymbols. Then the-lift of f has an
invariant set such thaft, is conjugate to a full shift om symbols provided that th€*-size

of g, @ ande is small enough and is different from zero.

Proof. A modified version of the arguments in the proof of theorem 2 applies. O

6. Hyperbolic structures

Proposition 2. Let F = F,, be a simplex-lift of f. SupposeA, is a compact-invariant
set. Letp = (x1,...,x,) € A. If [Df(x1)| > +/2 for all p € A then the tangent bundle
T, R" has a hyperbolic structure provideglis small enough.

Proof. Let& e T,R" with usual coordinate§ = (%1, ..., &,) such that the tangent map of
the simplen-lift is given by

o o N

g 00 0
100 ---0
DF.(p)=|0 1 0 0

0O 00 ---10
whereg = Df(x1). ThenDF.(p)¢§ = (qé1+ €&,,&1,...,&-1). LetC, C T,R" be the
cone

cpz{geTpR" DE > ) E
k=2

and letr denote the constant field of congs— C,. Sincer is constant we omit the base
point p in C, and writeC = C,. If g2 > 2 theng? — 2|ge| > 2 for smalle. We will first
prove thatr is D F.-invariant, i.e.DF.(p)C C C. A simple computation show that

n n—1
(q&1 + €£)% > g7 — 2qellaallénl > (g% — 2qe))e? > 267 > Y g2 > ) &

k=1 k=1
and proves thé F,-invariance ofr. By the same argument we get tHaF, is an expansion
onC:

n—1 n—1 n
IDF(P)EN® = (g1 + €&)*+ Y &7 > 262+ Y 2> &2 = |&]°
k=1 k=1

k=1
A simple computation shows that

0 0 0 -0 1
et —e gy 0 -« 0
DFE_"H(p) -1 0 et — g -0 0
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where theg;, i =1,...,n — 1, are the derivatives of evaluated along the orbit. Hence

DF " (p)e = (&1, € (€1 — q182), . ... € HEni1 — q1E0)).

We claim thatD F-"+1(p) is an expansion off,R" \ C. To see this let us define singular
slicesP;,,i=1,...,n—1, by

Pi={£ eT,R" | —|e|] <& —qi&i11 < e}

Let "~ denote the unit sphere ifi,R". We define singular set§, i = 1,...,n —1, on
S"1py S; = §"~1N P,. We claim that

n—1
Szﬂs,-csn—lmc.
i=1

To see this we consider the middle hyperplanes of the singular slices givigp.by ¢ ~1&;,
i=1,2...,n—1,and note thak; = q; ‘¢, *--- ¢ &, i =2,...,n, with

n n—=1 k
diet= (1 L [la?)et=1
i=1 k=1i=1

n—1 k
-‘?12:1/(14‘ Hqi2>‘
k=1i=1

Clearly¢ € S"~tN C if and only if §2 > 1, and sinceg;| > +/2 we find

Hence

Hence the intersection of the middle singular hyperplanes is containg&ttmn C, and by
continuity

n—1
s=(\Scstnc
i=1
if |e| is small. This proves thab F"*(p) is an expansion off,R" \ C since at least one
of the termse ~2(&; — q;&;,1)% > 1in | DF"TL(p)&|| if &£ € "1\ C by the argument above.
Hence||DF""1(p)¢| > ||£]l. Hencer satisfies theorem 2.2 of [GMN], and establishes a
hyperbolic structure for the simplelift of f. O

The last theorem extends by the stability theorem for hyperbolic setslifts of f
where the perturbation terg has smallC?-size.

Theorem 3. Let F = F,, be a simplen-lift of f. SupposeA., is a compactF-invariant

set. Letp = (x1,...,x,), U an open neighbourhood af,, and F, . an n-lift of f such

that the perturbation term has smallC*-size. If [Df (x1)| > /2 for all p € U then there
exist numbers; > 0i = 1, 2 such thatF,, . has a hyperbolic invariant set, . c U for all

€ with |e — ¢g| < 81 and|a| < 8,. Furthermore, the dynamics on these sets are equivalent
in the sense that the restriction to the invariant sets are all topologically conjugate.

Proof. By proposition 2 theF, -invariant setA., has a hyperbolic structure. Hence the
theorem follows from the stability theorem for hyperbolic sets [Nit]. O
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